Simulation Study of the 18 MW Condensing Power Plant at Coke-Oven Plant Кокс-Эрчим Хүчний Үйлдвэрийн Дэргэдэх 18 МВт Чадалтай Конденсацийн Цахилгаан Станцын Загварчлалын Судалгаа
Main Article Content
Keywords
Coke-oven plant, Feasibility study, Performance analysis, Heat recovery steam generators, Additional gas burner, CO2 reduction
Abstract
Due to climate change, air pollution, greenhouse gas emissions, and the scarcity of energy resources worldwide, coupled with a sharp increase in prices, countries face an urgent need to review their energy policies. They need to shift away from solid fuels toward renewable energy and waste heat from industrial processes for energy production. Using heat recovery steam generators (HRSGs) in industrial processes can reduce fuel consumption and repurpose high-potential flue gases from coke, cement, and chemical plants to heat water, produce steam, and generate electricity in thermal power plants. Heat recovery steam generators enable the most efficient use of waste gas heat from industrial processes. This research paper presents a thermodynamic model of an 18 MW condensing power plant (CPP), featuring three boilers and three turbines. The model utilizes a heat recovery steam generator operating at 950°C with a mass flow rate of 72 t/h from the waste gas heat of the coke-oven plant. This study examines the 18 MW condensing power plant's operating performance and techno-economic indices under design and off-design conditions. The impact of changes in waste gas parameters (temperature and mass flow rate) from the coke-oven plant on the operating performance and techno-economic indices of the 18 MW condensing power plant was also studied. A simulation was developed to install an additional gas fuel burner in the heat recovery steam generator that utilizes waste gas heat, aiming to maintain the operating performance and techno-economic indices of the 18 MW condensing power plant at a nominal load when the flue gas parameters change.
Downloads
Metrics
References
2. В.А.Глухарев, Д.В.Сивицкий “Методические указания по выполнению курсовой работы «Определение эффективности применения котла-утилизатора» по дисциплине «Энергосбережение в теплоэнергетике, теплотехнике и теплотехнологиях»” 2019 он, хуудас 6
3. Зайцев Виталий Константинович “Анализ конструкций, выбор и поверочный расчет котла утилизатора для парогазовой установки мощностью 500 МВт” 2016 он, хуудас 13-14
4. Yunli Jin, Naiping Gao, Tong Zhu “Techno-economic analysis on a new conceptual design of waste heat recovery for boiler exhaust flue gas of coal-fired power plants” 21 September 2019, Energy Conversion and Management. Vol 200. https://doi.org/10.1016/j.enconman.2019.112097
5. Shiyue Qin, Shiyan Chang “Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery” Energy Vol. 80 (2015) 275-283. https://doi.org/10.1016/j.energy.2017.09.105
6. Hussam Jouhara, Navid Khordehgah, Sulaiman Almahmoud, Bertrand Delpech, Amisha Chauhan, Savvas A. Tassou “Waste heat recovery technologies and applications” Thermal Science and Engineering Progress. Vol 6. (2018) 268-289. https://doi.org/10.1016/j.tsep.2018.04.017
7. Pei-Hsun Lin, Pai-Hsiang Wang, An-Tsu Huang “Exergy Analysis of a Coke Dry Quenching System” China Steel Technical Report, No. 22, pp. 63-67, (2009)
8. Masayuki Watanabe, Naruo Hamasaki “Advanced Technology and Application of Large-Scale CDQ” Yokohama 221-0056, Japan
9. [9] Gaddi Rudramuni1, Sri C N Nataraj “Enhancement of steam generation in CDQ Power plant” International Research Journal of Engineering and Technology Volume 03, May-2016
10. Kai Sun, Chen-Ting Tseng, David Shan-Hill Wong, Shyan-Shu Shieh, Shi-Shang Jang, Jia-Lin Kang, Wei-Dong Hsieh “Model predictive control for improving waste heat recovery in coke dry quenching processes” Energy 80 (2015) 275-283
11. Hardarshan S. Valia “Nonrecovery and Heat recovery cokemaking technology” Coal Science Inc., Highland, IN, United States. https://doi.org/10.1016/B978-0-08-102201-6.00010-8
12. Abrar Inayat “Current progress of process integration for waste heat recovery in steel and iron industries” Fuel 338 (2023) 127237. https://doi.org/10.1016/j.fuel.2022.127237
13. П.Н. Шляхин, М.Л. Бершадский, “Краткий справочник по паротурбинным установкам”, Москва 1970, 28-32.
14. https://legalinfo.mn/mn/detail?lawId=204848
15. M.A.Al-Saleh, S.O.Duffuaa, M.A.Al-Marhouan, J.A.Al-Zayer, "Impact of Crude Oil Production on the Petrochemical Industry in Saudi Arabia," Energy Volume 16 (1991) 1089-1099. https://doi.org/10.1016/0360-5442(91)90141-8